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Abstract. Maximum Distance Separable (MDS) matrices have been widely used in
symmetric cryptographic primitives because of their excellent cryptographic properties.
However, due to the heavy area cost, larger-scale MDS matrices than 4 × 4 ones are
limited in ciphers, although they have a larger branch number. In this paper, we
propose a general method for constructing MDS matrices with low implementation
area cost, using matrix decomposition, automatic search, and symbolic computation
techniques. According to matrix decomposition theory, every invertible matrix can be
decomposed into a sequence of elementary matrices, including Type-1 (row switching),
Type-2 (row multiplication) and Type-3 (row addition) elementary matrices. So,
we first propose a greedy algorithm to construct MDS matrix patterns with as few
Type-3 elementary matrices as possible. Then, we build an automatic search model
to minimize the implementation area of multiplication coefficients used in Type-3
elementary matrices. Lastly, another greedy strategy is raised to further reduce the
implementation area of MDS matrix patterns by introducing a few Type-2 elementary
matrices. In comparison to previous methods, our approach is more general and
effective for constructing lower-area MDS matrices. To demonstrate the efficiency
of our method, we apply the framework on constructing m × m MDS matrices over
F2n or GL(n,F2), where m ∈ {4, 5, 6, 7, 8} and n ∈ {4, 8, 16, 32, 64}. The 4 × 4 MDS
matrices constructed by our method can also reach the minimum area. The 5 × 5,
6 × 6 and 7 × 7 MDS matrices constructed by our method have lower area compared
to previous ones. While the 8 × 8 MDS matrices with n ∈ {16, 32, 64} constructed by
our method also have lower area compared to previous ones.
Keywords: MDS matrix · Matrix decomposition · Symbolic computation · Auto-
matic optimization · Low area

1 Introduction
1.1 Background
Linear diffusion layers are very important linear components in symmetric cryptographic
primitives, including block ciphers, hash functions, authenticated encryption schemes and
message authentication codes. As one type of linear diffusion layers, Maximum Distance
Separable (MDS) matrices have been widely used in international standard ciphers such as
AES [DR02], SM4 [ISO21], CLEFIA [KM11] and so on. However, due to the heavy area
cost, large-scale MDS matrices are limited in ciphers, although they have large branch
numbers. Therefore, designing MDS matrices with low area has become a hot research
topic in recent years, especially for post-quantum secure cryptographic primitives.

Previous effective methods available to construct MDS matrices can be mainly classified
into three classes:
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• determine an MDS matrix directly by a special mathematical matrix;

• construct an MDS matrix by iterating a special structure several times;

• exhaustively search an MDS matrix by combining some basic operations.

The first class of methods generally takes current mathematical matrices such as
Circulant, Hadamard, Toeplitz and Cauchy matrices [SDMO12, GR13, LW16, SS16, SS17,
GPV17, PSA+18, CL19] directly as MDS matrices. The main advantage of this class
of methods is that it allows easy construction of large-scale MDS matrices due to the
compact search space. However, their main disadvantage is that the implementation
area of these mathematical matrices is noticeably larger than the ones produced by other
classes of methods. The second class of methods employs iterative constructions, in
which certain special structures, such as LFSR [SDMS12, WWW13], GFS [WWW13],
DSI [TTKS18, LSS+19] and DLS [GPS22], are repeatedly applied to construct MDS
matrices. This class of methods is helpful for constructing low-area MDS matrices,
but it is difficult to reach the minimum area bound, as it heavily depends on iterative
structures. To break the iterative feature, Sajadieh and Mousavi [SM21] proposed the
EGFS construction, which produced 8 × 8 MDS matrices with the current minimum
area. A further limitation is that some constructions, such as GFS and EGFS, can only
generate even-dimensional MDS matrices. The third class of methods, i.e., exhaustively
searching MDS matrices by combining some basic operations, is one type of interesting
and more general method. In [DL18], Duval and Leurent proposed a construction method
based on three operations, including XOR, COPY and Multiplication over a ring. It
obtained the minimum area for 4× 4 MDS matrices. In [WLTZ23], Wang et al. proposed
another construction method based on three types of elementary matrices over a field,
inspired by the optimization methods for existing matrices based on matrix decomposition
technique [XZL+20, LXZZ21, YWS+24]. It also achieved the minimum area of 4× 4 MDS
matrices. However, both above methods can only construct 4× 4 MDS matrices due to
the huge search space.

Matrix decomposition is an attractive technique. Every invertible matrix can be
decomposed into a sequence of elementary matrices. There are three types of elementary
matrices, including Type-1 (switch two rows), Type-2 (multiply a row by a non-zero
number) and Type-3 (add a multiple of one row to another row) elementary matrices.
Compared to the three classes of traditional methods, it is a good idea to use the matrix
decomposition technique to construct larger-scale MDS matrices than 4× 4 ones, but we
need to solve the following problems:

• It is infeasible to exhaustively search all combinations of three types of elementary
matrices to construct m×m MDS matrices as the dimension m increases. Therefore,
how to minimize the number of Type-3 elementary matrices so as to reduce the
implementation area while maintaining the MDS property?

• Each Type-2 or Type-3 elementary matrix has a multiplication coefficient in the
finite field. How to find the optimal coefficients both keeping the MDS property and
further minimizing the implementation area?

In this paper, we aim to overcome the above problems and propose a more general
method to construct larger-scale MDS matrices than 4× 4 ones towards lower area based
on matrix decomposition, automatic search and symbolic computation techniques.

1.2 Contributions
In this paper, we propose a new framework to construct MDS matrices. The key idea
is to construct MDS matrices with as few Type-3 elementary matrices as possible first,
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then minimize the area by finding optimal multiplication coefficients in Type-3 elementary
matrices and lastly further reduce the area by introducing a few Type-2 elementary
matrices. The main contributions are as follows:

Propose a greedy algorithm to construct MDS matrix patterns by Type-3
elementary matrices. Inspired by matrix decomposition technique, we propose a greedy
strategy to construct MDS matrix patterns by a product of Type-3 elementary matrices
based on symbolic computation. It is guided by the number of singular submatrices in
the resulting matrix after each Type-3 matrix joined. Compared to exhaustive search, our
algorithm can significantly reduce the search space so as to improve the efficiency of MDS
matrix construction. As applications, we construct 4 × 4 MDS matrix patterns with 8
Type-3 matrices (vs. previous 8 ones), 5×5 MDS matrix patterns with 13 Type-3 matrices
(vs. previous 15 ones), 6× 6 MDS matrix patterns with 17 Type-3 matrices (vs. previous
18 ones), 7× 7 MDS matrix patterns with 23 Type-3 matrices (vs. previous 28 ones), as
well as 8× 8 MDS matrix patterns with 26 Type-3 matrices (vs. previous 28 ones).

Propose an automatic method to minimize the area of MDS matrix patterns
based on SAT/SMT. To minimize the implementation area of Type-3 matrices once an
MDS matrix pattern is obtained in finite field F2n , we transform the searching of optimal
multiplication coefficients in these Type-3 matrices into an optimization problem over
multiplicative group F∗

2n , which is also a cyclic group with at least one generator. Based
on this theoretical foundation, we incorporate the constraint that all submatrices S of the
target MDS matrix pattern must satisfy det(S) ̸= 0 into a SAT/SMT-based solving model.
This automatic search method can effectively minimize the implementation area of a given
MDS matrix pattern.

Propose another greedy strategy to further reduce implementation area by
using Type-2 elementary matrices. In fact, adding Type-2 matrices to one side of the
sequence of Type-3 matrices does not affect the MDS property, while Type-2 and Type-3
matrices can be exchanged under certain conditions. Based on these findings, we propose
another greedy strategy guided by the total implementation cost of Type-2 and Type-3
coefficients. This new strategy can further reduce the implementation area of a given MDS
matrix pattern by carefully selecting Type-2 matrices and inserting them into suitable
positions of existing decomposition sequences.

Applications. We apply our proposed framework to construct m×m MDS matrices
over F2n or GL(n,F2), where m ∈ {4, 5, 6, 7, 8} and n ∈ {4, 8, 16, 32, 64}. All results
are summarized in Table 1. From this table, we can find that our method has several
advantages. Firstly, our method is more general and it can be used to construct m×m
MDS matrices where m ∈ {4, 5, 6, 7, 8}. Then, the 4 × 4 MDS matrices constructed by
our method can also reach the minimum area, without the need for exhaustive search.
The 5 × 5, 6 × 6 and 7 × 7 MDS matrices constructed by our method have lower area
compared with previous methods. Since the 8 × 8 MDS matrices constructed by our
method need 26n + 8#XOR(L) + 2#XOR(L−1) + 4#XOR(L2), but EGFS construction needs
28n + 4#XOR(L) + 4#XOR(L−1) + 4#XOR(L3) when n ∈ {16, 32, 64}, it easy to find that the
matrices constructed by our method have lower area. Unfortunately, when n = 8, we do
not find a lower-area 8× 8 MDS matrix than the ones produced by the EGFS construction.

All experiments were conducted on a desktop equipped with an Intel i7-14700 CPU
and 32GB of RAM. The source codes and search results are available at https://github.
com/yaaannn/mds-construction/.

1.3 Outline
In Section 2, some preliminaries including MDS matrices theory, matrix decomposition
and XOR count of matrices are introduced. In Section 3, a new MDS matrix construction
method is presented, including constructing MDS matrix patterns over the symbolic ring,
minimizing the implementation area of multiplication coefficients in Type-3 elementary

https://github.com/yaaannn/mds-construction/
https://github.com/yaaannn/mds-construction/
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Table 1: Comparison with previous methods for m×m MDS matrices with n-bits word
size in terms of area cost.

m×m Method Cost(#XOR) Source
n = 4 n = 8 n = 16 n = 32 n = 64

4

LFSR 68 116 212 404 788 [WWW13]
GFS 40 72 136 264 520 [WWW13]
DSI 40 72 - - - [TTKS18]
DLS 40 72 - - - [GPS22]

Exhaustive 35 67 - - - [DL18]
Exhaustive 35 67 - - - [WLTZ23]

EGFS 35 67 131∗ 259∗ 515∗ [SM21]
Ours 35 67 131 259 515 Sect. 4.1

5

LFSR 95 175 335 655 1295 [WWW13]
DSI - 155 - - - [TTKS18]
DSI - 150 - - - [LSS+19]
DLS 130 140 - - - [GPS22]
Ours 65 117 215 423 839 Sect. 4.2

6

LFSR 150 270 510 990 1950 [WWW13]
GFS - 216 360 612 1188 [WWW13]
DSI - 186 - - - [TTKS18]
DLS - 180 - - - [GPS22]

EGFS 90 156 294∗ 582∗ 1158∗ [SM21]
Ours - 154 290 553 1097 Sect. 4.3

7

LFSR 210 378 714 1386 2730 [WWW13]
DSI - 378 - - - [TTKS18]
DSI - 329 - - - [KSV19]
DLS - 315 - - - [GPS22]
Ours - 227 414 759 1459 Sect. 4.4

8

LFSR 296 520 968 1864 3656 [WWW13]
GFS - - 640 1152 2112 [WWW13]

EGFS - 260 488∗ 916∗ 1812∗ [SM21]
Ours - 281 452 850 1682 Sect. 4.5

∗ These results by EGFS construction with n ∈ {16, 32, 64} are calculated and checked by
ourselves based on the original paper [SM21].

matrices by an automatic search method, and further reducing the implementation area by
Type-2 matrices. As applications, m×m MDS matrices over F2n or GL(n,F2) are given
in Section 4. Lastly, we conclude this paper in Section 5.

2 Preliminaries
In this section, we briefly recall some concepts and definitions about MDS matrices which
will be used throughout this paper.

2.1 MDS Matrices
Let F2n be a finite field with 2n elements and Fm

2n be an m-dimensional vector space over
F2n , where m and n are positive integers. Indeed, for any linear mapping λ over Fm

2n , there
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exists an m×m matrix M over F2n such that λ(v) = M · v. Hereafter, we can represent
a linear diffusion layer by a linear diffusion matrix of size m×m over word size n.

Given a vector v = (v0, v1, · · · , vm−1)⊤ ∈ Fm
2n , its bundle weight is defined as the

number of non-zero components in v, denoted as ω(v). The branch number of a linear
diffusion matrix can be defined as follows.

Definition 1 (Branch number [DR02]). Let M be an m×m matrix over F2n . Then the
differential branch number of M is defined as

Bd(M) = min
v̸=0
{ω(v) + ω(M · v)},

while the linear branch number of M is defined as

Bl(M) = min
v̸=0
{ω(v) + ω(MT · v)}.

The branch number usually is used to measure the diffusion property of linear matrices.
It is important to note that the maximum value of both Bd(M) and Bl(M) is m + 1.

When matrix M ’s differential branch number and linear branch number reach the
maximum, M is called an MDS matrix, which is formally defined as follows.

Definition 2 (MDS matrix). Let M be an m×m matrix over F2n . Then the matrix M
is called an MDS matrix if and only if Bd(M) = Bl(M) = m + 1.

Beside the above definition, another way to determine whether a matrix is MDS is
given by the following lemma, which we also adopt in our work.

Lemma 1. Let M be an m×m matrix over F2n . Then the matrix M is an MDS matrix
if and only if every square submatrix of matrix M is non-singular.

2.2 Matrix Decomposition
Definition 3 (Elementary matrices). Let F2n be a finite field and m a positive integer.
Elementary matrices over F2n fall into three types (or sets):

• Type-1 (set S1): Row permutation matrices Ei,j , which interchange the i-th and
j-th rows for i ̸= j.

• Type-2 (set S2): Row scaling matrices Ei(α), which multiply the i-th row by
α ∈ F∗

2n .

• Type-3 (set S3): Row addition matrices Ei,j(β), which add β ∈ F2n times the j-th
row to the i-th row for i ̸= j.

To describe these above three types of elementary matrices clearly, we rewrite them
in matrix form, which is shown in Appendix A. Actually, elementary matrices are very
important in the matrix theory. Every non-singular linear matrix can be decomposed as a
product of elementary matrices, as shown in Lemma 1.

Theorem 1 (Matrix decomposition). Let M be an m ×m invertible matrix over F2n .
Then the matrix M can be decomposed as a product of elementary matrices:

M = G1 ·G2 · · · · ·Gt, (1)

where each Gi ∈ S1 ∪ S2 ∪ S3 for i = 1, 2, . . . , t.

In [VKS22], some commutative properties are also raised to reorder the elementary
matrices from S1,S2 and S3 in a decomposition, which are illustrated in the following
Proposition 1 and Proposition 2.
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Proposition 1 ([VKS22]). Let fi,j(x) =


i, if x = j,

j, if x = i,

x, otherwise.

Then we have

(1) Ei,j · Ek(α) = Efi,j(k)(α) · Ei,j,

(2) Ei,j · Ek,l(β) = Efi,j(k),fi,j(l)(β) · Ei,j.

By using Proposition 1, all Type 1 matrices in S1 can always be moved to the right or
left of the sequence in Equation (1). So this equation can be represented equivalently in
the following form:

M = G1
1 ·G1

2 · · ·G1
t1︸ ︷︷ ︸

S1

·G
′

1 · · ·G
′

t−t1
, (2)

where G1
i ∈ S1 for i = 1, 2, . . . , t1 and G′

j ∈ S2 ∪ S3 for j = 1, 2, . . . , t− t1.
Similarly, the product of elementary matrices from S2 and S3 also satisfies certain

commutative properties, which allow their order to be interchanged. These properties are
summarized in the following proposition.

Proposition 2 ([VKS22]). Let α, β ∈ F∗
2n . Then we have

Ei(α) · Ej,k(β) =


Ej,k(β) · Ei(α), if i /∈ {j, k},
Ej,k(αβ) · Ei(α), if i = j,

Ej,k(α−1β) · Ei(α), if i = k.

By using Proposition 2, all Type-2 matrices within the sequence in Equation (2) can
be further grouped together. That is

M = G1
1 ·G1

2 · · ·G1
t1︸ ︷︷ ︸

S1

·G2
1 ·G2

2 · · ·G2
t2︸ ︷︷ ︸

S2

·G3
1 ·G3

2 · · ·G3
t3︸ ︷︷ ︸

S3

, (3)

where Gj
i ∈ Sj for j = 1, 2, 3. This structured decomposition sequence is useful for both

theoretical analysis and efficient implementation of matrices.

2.3 XOR Count
The hardware implementation cost of a linear diffusion layer (i.e., matrix) is usually
measured in terms of area and latency. Since only XOR operations are used in linear
diffusion matrices, the number of XOR operations is considered as a mean indicator to
measure a matrix’s implementation area.

There are three methods to count the XOR operations according to different hardware
implementations. The first counting method is called direct XOR (d-XOR) count, as
shown in Definition 4.

Definition 4 (d-XOR count [KPPY14]). The d-XOR count of an m ×m matrix M ∈
GL(n,F2), denoted as d-XOR(M), is determined by

d-XOR(M) = ω(M)−m,

where ω(M) is the number of nonzero entries in M .

The second counting method is called sequential XOR (s-XOR) count, which is exactly
suitable for the implementation of matrices with decomposition. It is defined as follows.
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Definition 5 (s-XOR count [JPST17]). The s-XOR count of an m × m matrix M ∈
GL(n,F2), denoted as s-XOR(M), is represented as

M = P

t∏
k=1

(I + Eik,jk
),

where P is a permutation matrix and each Eik,jk
(ik ̸= jk, k = 1, 2, . . . , t) is a binary

matrix with 1 as the (ik, jk)-th entry and 0 elsewhere. It is clear that the s-XOR count of
M is t.

To show the difference between d-XOR count and s-XOR count, we take the following
small 4× 4 matrix over F2 as an example:

M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

According to Definition 4, to calculate (y1, y2, y3, y4)T = M · (x1, x2, x3, x4)T , we have
y1
y2
y3
y4

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1




x1
x2
x3
x4

 =


x1

x1 + x2
x1 + x2 + x3

x1 + x2 + x3 + x4

 .

Clearly, the d-XOR count of M is 6. However, based on matrix decomposition theory, we
have

M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 ·


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 ·


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .

Thus, the s-XOR count of M is 3 due to Definition 5.
It is easy to find that usually the s-XOR count is smaller than the d-XOR count for

the same linear diffusion matrix. Therefore, constructing linear diffusion matrices towards
low area with matrix decomposition technique is a good choice.

Since MDS matrices are usually constructed in finite field F2n , the multiplication of
α ∈ F2n given by x 7→ αx is a linear function over F2. It should be taken into account
when calculating the cost of MDS matrices. Regarding the multiplication x 7→ αx, Beierle
et al. obtained the following results.

Lemma 2 ([BKL16]). Let α ∈ F2n , then we have

(1) #XOR(α) = 0 if and only if α = 1.

(2) #XOR(α) = #XOR(α−1).

(3) #XOR(α±k) ≤ k · #XOR(α) for k ≥ 1.

where the XOR count of α ∈ F2n is denoted as #XOR(α). It can be either d-XOR count or
s-XOR count, unless specified otherwise.

According to matrix decomposition theory, every linear matrix can be decomposed as a
sequence of elementary matrices. Meanwhile, the area cost of this decomposition sequence
is determined by Type-2 and Type-3 matrices, as Type-1 matrices do not contribute to
implementation area. Thus, we can calculate the cost to implement M as follows.
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Definition 6 (Cost of decomposition sequence). Let M be an m×m matrix over F2n with
a decomposition sequence according to Equation (3), then the matrix M can be rewritten
as

M = Ert1 ,st1
· · ·Er1,s1︸ ︷︷ ︸
S1

·Ekt2
(βt2) · · ·Ek1(β1)︸ ︷︷ ︸

S2

·Eit3 ,jt3
(αt3) · · ·Ei1,j1(α1)︸ ︷︷ ︸

S3

.

Then, the cost to implement M can be calculated as

#XOR(M) = t3 · n +
t3∑

i=1
#XOR(αi) +

t2∑
j=1

#XOR(βj), (4)

where t2, t3 are the number of Type-2 and Type-3 matrices, respectively.

Other Notations. For simplicity, we use nonzero positions in each row of a binary matrix
as a representation of the matrix. For example, [[1, 2, 3], [1, 3], [2]] represents the binary

matrix

1 1 1
1 0 1
0 1 0

 . We also denote the m×m identity matrix as Im.

3 General MDS Matrix Construction Method Towards Low
Area

Inspired by matrix decomposition technique for optimizing the implementation of existing
matrices, we would like to adopt this technique to construct new low-area MDS matrices.

According to Equation (3), any partitioned matrix can be decomposed into a sequence
of elementary matrices. Since Type-1 matrices do not contribute to the branch number
and implementation area of the resulting matrix, while Type-2 matrices do not affect
the branch number but can reduce the implementation area, we first use a sequence of
Type-3 matrices to construct an MDS matrix, then choose suitable Type-2 matrices to
further reduce its implementation area. In our construction method, Type-1 matrices are
not necessarily needed. Indeed, this is a good approach for constructing low-area MDS
matrices. However, there are three main problems:

(1) It is infeasible to exhaust all possible Type-3 matrices as the dimension m increases,
because the time complexity is about O((m2 −m)t), where t is the number of Type-
3 matrices. How to minimize the number of Type-3 matrices so as to reduce the
implementation area?

(2) In each Type-3 matrix of the form Ei,j(α), there are 2n possible values of the coefficient
α ∈ F2n . It is also infeasible to exhaust all possible combinations of (α1, . . . , αt), even
if the positions of the Type-3 matrices (i1, j1), (i2, j2), . . . , (it, jt) are fixed or partially
determined. How to find the optimal coefficients that both satisfy the MDS property
and minimize the implementation area?

(3) Since Type-2 matrices can reduce the implementation area of the resulting MDS
matrix, how to effectively select and insert the Type-2 matrices within the sequence of
Type-3 matrices to further reduce the implementation area?

To solve the above problems, we adopt a matrix pattern construction – pattern opti-
mization – instantiation strategy to construct MDS matrices. In Section 3.1, we propose a
greedy algorithm to construct MDS matrix patterns by symbolic computation, which can
minimize the number of used Type-3 matrices. In Section 3.2, we propose an automatic
search model for (α1, . . . , αt) over a fixed finite field based on SAT/SMT to minimize the
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implementation area as much as possible. In Section 3.3, we propose a greedy strategy
that further reduces the implementation area with the help of Type-2 matrices. Combining
these three parts together, we are able to search lower-area m×m MDS matrices, where
m ∈ {4, 5, 6, 7, 8}.

3.1 Constructing MDS Matrix Patterns by Type-3 Matrices Over Sym-
bolic Ring

According to Equation (3), we can construct an m×m partitioned MDS matrix M over
the finite field F2n as a product of Type-3 elementary matrices:

M = Eit,jt
(αt) · · ·Ei2,j2(α2) · Ei1,j1(α1) · Im,

where (i1, j1), (i2, j2), . . . , (it, jt) and α1, α2, . . . , αt are undetermined variables.
In total, for an given m×m partitioned matrix, there are m(m−1) Type-3 matrices of the

form Ei,j(α), if not considering the value of α. Let E = {Ei,j(α) | 0 ≤ i < m, 0 ≤ j < m}
denote the set of such symbolic Type-3 matrices. Our first goal is to determine the value
of (i1, j1), (i2, j2), . . . , (it, jt) through symbolic computation so as to minimize the number
of Type-3 matrices.

To achieve this goal, we adopt a greedy strategy guided by the number of singular
submatrices in the resulting matrix after each Type-3 matrix joined. We initialize the
construction with M0 = Im. At step k for 1 ≤ k ≤ t, we select a Type-3 matrix
Eik,jk

(α) that minimizes the number of singular submatrices in the updated matrix
Mk = Eik,jk

(α) ·Mk−1.
Formally, let S(M) denote the multiset of all square submatrices of M , where identical

submatrices occurring at different positions are counted separately, i.e., multiplicities are
preserved. We define

Sing(M) = {S ∈ S(M) | det(S) = 0},

where det(S) is computed symbolically using a computer algebra system such as SageMath1.
At each selection, we choose a Type-3 matrix according to the rule

Eik,jk
(α) = arg min

Ei,j(α)∈E
|Sing(Ei,j(α) ·Mk−1)| ,

where the operator arg min denotes a Type-3 matrix in E that minimizes the number
of singular submatrices of the resulting product. Of course, it is possible that there are
several matrices achieving the same minimum number of singular submatrices, i.e.,∣∣Sing(Eik′ ,jk′ (α) ·Mt−1)

∣∣ = min
Ei,j(α)∈E

|Sing(Eik,jk
(α) ·Mt−1)| .

To avoid local optimality or degeneracy, we suggest picking one matrix randomly from
these candidates to continue the process. The process terminates once Sing(M) = ∅. At
this point, all submatrices of M are non-singular. Now, M is a candidate MDS matrix
pattern. The above procedures are summarized in Algorithm 1.

To illustrate the process more clearly, we take the construction of a 4× 4 MDS matrix
pattern as an example, which is shown in Table 2. Note that for a 4× 4 matrix, there are
12 Type-3 matrices in total.

Application on MDS matrix patterns. We apply the proposed greedy algorithm to
construct m×m MDS matrix patterns over the symbolic ring. In this setting, the matrix
entries are represented symbolically, and the determinants of submatrices are computed
symbolically as well. The proposed algorithm tends to minimize the number of Type-3

1SageMath is a free open-source mathematics software system. Available at https://www.sagemath.
org/.

https://www.sagemath.org/
https://www.sagemath.org/
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Algorithm 1: Greedy strategy to construct MDS matrix pattern via Type-3
elementary matrices over symbolic ring

Input: Matrix dimension m×m
Output: Sequence O = [Ei1,j1(α1), . . . , Eit,jt

(αt)] such that
M = Eit,jt

(αt) · · ·Ei1,j1(α1) · Im is MDS matrix over symbolic ring
1 Initialize M ← Im, O ← [ ];
2 while Sing(M) ̸= ∅ do
3 Let E ← {Ei,j(α) | i ̸= j, α is symbolic variables};
4 Initialize best_set← [ ], min_sing←∞;
5 foreach Ei,j(α) ∈ E do
6 M ′ ← Ei,j(α) ·M ;
7 Compute s← |Sing(M ′)|;
8 if s < min_sing then
9 best_set← [Ei,j(α)];

10 min_sing← s;
11 else if s = min_sing then
12 Append Ei,j(α) to best_set;

13 Randomly select E⋆
i,j(α) ∈ best_set;

14 M ← E⋆
i,j(α) ·M ;

15 Append E⋆
i,j(α) to O;

16 return O;

elementary operations required to reach an MDS matrix. Unlike exhaustive enumeration
or algebraic constructions, this approach yields highly compact decompositions, which is
beneficial for searching MDS matrices with low implementation area.

Table 3 summarizes the number of Type-3 operations required to construct symbolic
MDS matrix patterns of different dimensions. Our results are compared with existing
constructions reported in the literature, which shows that our method often achieves
shorter decomposition lengths, especially for MDS matrices with higher dimensions.

3.2 Minimize the Implementation Area of Multiplication Coefficients
in Type-3 Matrices

Once an MDS matrix pattern is constructed by a sequence of Type-3 elementary matrices,
it can be written as:

M = Eit,jt
(αt) · · ·Ei2,j2(α2) · Ei1,j1(α1).

Here, the positions (i1, j1), . . . , (it, jt) are fixed. The next step is to determine the values of
α1, . . . , αt in order to minimize the total XOR cost

∑t
i=1 #XOR(αi), thereby optimizing the

implementation area while ensuring that the resulting matrix M remains MDS property.
We focus on constructing MDS matrices over the finite field F2n , where the multiplicative

group F∗
2n is a cyclic group with order 2n−1. Let g be a generator of this group, then for

any α ∈ F∗
2n , there exists an integer λ ∈ [0, 2n−2] such that α = gλ.

Thus, the matrix can be rewritten as:

M = Eit,jt
(gλt) · · ·Ei1,j1(gλ1), with 0 ≤ λi < 2n−1.

Finding the optimal tuple (α1, . . . , αt) is equivalent to finding (λ1, . . . , λt) such that the
total cost

∑t
i=1 #XOR(gλi) is minimized. Meanwhile, for each square submatrix S ⊆ M ,
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Table 2: An example of greedy strategy to construct a 4× 4 MDS matrix pattern

Step Selections of Type-3 matrix MDS matrix pattern |Sing(M)|
0 — M0 = I4 54
1 All 12 Type-3 matrices M1 = E0,1(α1) ·M0 50
2 {E2,3(α2), E3,2(α2)} M2 = E2,3(α2) ·M1 45
3 {E1,2(α3), E3,0(α3)} M3 = E1,2(α3) ·M2 36
4 {E3,0(α4)} M4 = E3,0(α4) ·M3 24
5 {E0,1(α5), E2,3(α5)} M5 = E0,1(α5) ·M4 16
6 {E2,3(α6)} M6 = E2,3(α6) ·M5 6
7 {E1,2(α7), E3,0(α7)} M7 = E1,2(α7) ·M6 2
8 {E3,0(α8)} M8 = E3,0(α8) ·M7 0

Table 3: Number of Type-3 elementary matrices required to construct MDS matrices

m×m LFSR [WWW13] DSI [KSV19] DLS [GPS22] GFS [SM21] This Work
4× 4 12 8 8 8 8
5× 5 20 15 15 - 13
6× 6 30 18 18 18 17
7× 7 42 28 28 - 23
8× 8 56 - - 28 26

we symbolically compute its determinant:

det(S) = ga1 + ga2 + · · ·+ gas ̸= 0,

where the exponents a1, . . . , as are linear combinations of λ1, . . . , λt. This condition ensures
the non-singularity of all submatrices, i.e., the MDS property.

Given the pattern, the exponent assignment problem can be formulated as the following
optimization problem:{

min
∑t

i=1 #XOR(gλi),
det(S) = ga1 + · · ·+ gas ̸= 0, ∀S ⊆M.

To solve this problem, we propose an automatic search model based on SAT/SMT. Since
F∗

2n is a cyclic group, we have:

gλ = gλ mod (2n−1), so g−1 = g2n−2, g−2 = g2n−3, . . .

Usually, the implementation area cost of gλ is smaller when |λ| is smaller. Therefore,
we approximate:

#XOR(gλ1) ≤ #XOR(gλ2) if |λ1| < |λ2|, λi ∈
[
−(2n−1−1), 2n−1−1

]
.

Hence, the minimization target
∑t

i=1 #XOR(gλi) can be approximated by
∑t

i=1 |λi|. Like-
wise, the constraint

det(S) = ga1 + · · ·+ gas ̸= 0
can be rewritten as

det(S) = ga1 mod (2n−1) + · · ·+ gas mod (2n−1) ̸= 0.

However, it is difficult to directly determine whether det(S) ̸= 0 holds in F2n when
using this primitive representation. To address this challenge, we transform it into a
polynomial representation. Specifically, we define a mapping:

ϕ(λ) : λ 7→ gλ mod f(x),
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where f(x) ∈ F2[x] is a fixed irreducible polynomial defining F2n . The mapping ϕ can be
stored as a pre-computed table indexed by λ, mapping each exponent to its polynomial
representation in vector form. For instance, in F24 with f(x) = x4 + x + 1, an example of
the mapping ϕ is shown in Table 4.

Table 4: Pre-computed table for ϕ(λ) = gλ mod f(x) in F24 with f(x) = x4 + x + 1

λ ϕ(λ) by polynomial representation ϕ(λ) by vector representation
0 1 (0,0,0,1)
1 g1 (0,0,1,0)
2 g2 (0,1,0,0)
3 g3 (1,0,0,0)
4 g + 1 (0,0,1,1)
5 g2 + g (0,1,1,0)
6 g3 + g2 (1,1,0,0)
7 g3 + g + 1 (1,0,1,1)
8 g2 + 1 (0,1,0,1)
9 g3 + g (1,0,1,0)
10 g2 + g + 1 (0,1,1,1)
11 g3 + g2 + g (1,1,1,0)
12 g3 + g2 + g + 1 (1,1,1,1)
13 g3 + g2 + 1 (1,1,0,1)
14 g3 + 1 (1,0,0,1)

With the help of the pre-computed table ϕ, the determinant constraint is rewritten as:

det(S) = ϕ(a1 mod 2n−1)⊕ · · · ⊕ ϕ(as mod 2n−1) ̸= 0,

where ⊕ denotes bitwise XOR in F2n , replacing addition in the exponent domain.
In summary, the optimization problem is reformulated as:

min
∑t

i=1 |λi|,
−(2n−1−1) ≤ λi ≤ 2n−1−1, i = 1, 2, . . . , t

det(S) = ϕ(a1 mod 2n−1)⊕ · · · ⊕ ϕ(as mod 2n−1) ̸= 0, ∀S ⊆M.

This formulation can be solved by SMT solvers (e.g., Z32). In practice, we may incorporate
an additional constraint

∑t
i=1 |λi| ≤ Cmax, or perform optimization across all satisfying

assignments. This approach effectively guides the selection of exponent assignments with
lower implementation area, while ensuring the MDS property. The whole process is
summarized in Algorithm 2.

3.3 Further Reduce the Implementation Area by Type-2 Matrices
At this point, an MDS matrix pattern can be constructed by a sequence of Type-3 matrices
as:

M = Eit,jt
(gλt) · · ·Ei2,j2(gλ2) · Ei1,j1(gλ1),

where the positions (i1, j1), . . . , (it, jt) and the exponents λ1, . . . , λt are fixed.
Next, we aim to introduce Type-2 matrices into the sequence to further reduce the

implementation area. Since inserting Type-2 matrices at the left or the right of the
sequence does not affect the MDS property, we can add them individually at either end of
the sequence.

2Z3 is a high-performance SMT solver. Available at https://microsoft.github.io/z3guide/.

https://microsoft.github.io/z3guide/
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Algorithm 2: SMT-based automatic model to assign exponents of multiplication
coefficients in Type-3 matrices

Input: Symbolic matrix M with symbolic exponents λ1, . . . , λt, irreducible
polynomial f(x) ∈ F2[x], finite field F2n

Output: Assignment (λ1, . . . , λt) ∈ Zt such that determinants of all square
submatrices of M are nonzero in F2n

// Step 1: Initialize SMT environment
1 Declare t bitvector variables λ1, . . . , λt ∈ BitVec(k);
2 Constrain each λi to represent an integer in

[
−(2n−1−1), 2n−1−1

]
;

3 Constrain
∑t

i=1 |λi| ≤ Cmax ; // Optional upper bound
// Step 2: Define pre-computed table

4 Define mapping ϕ(λ) : λ 7→ gλ mod f(x);
5 Implement ϕ as a pre-computed over all possible λ mod (2n−1);

// Step 3: Encode determinant constraints
6 foreach square submatrix S ⊆M do
7 Compute symbolic determinant: det(S) = La1 + La2 + · · ·+ Las ;
8 Let v1 = ϕ(a1), . . . , vs = ϕ(as);
9 Add constraint: v = v1 ⊕ v2 ⊕ · · · ⊕ vm ̸= 0;

// Step 4: Solve and extract solution
10 Write SMT constraints to a file and invoke an SMT solver.;
11 if solution exists then
12 return model (λ1, . . . , λt)
13 else
14 return unsatisfiable — no valid instantiation found

According to Proposition (3), Type-2 and Type-3 matrices can be exchanged under
specific transformation rules as follows:

Ei,j(gλ) · Ek(gγ) =


Ei(gc) · Ei,j(gλ−γ) if k = i,

Ei(gc) · Ei,j(gλ+γ) if k = j,

Ei(gc) · Ei,j(gλ) otherwise.

Moreover, two Type-2 matrices can also be exchanged according to the following rule:

Ek(gγ) · El(gδ) =
{

Ek(gγ+δ) if k = l,

Ek(gγ) · El(gδ) otherwise.

Thus, each Type-2 matrix Ek(gγ) can be propagated from the right to the left of the
sequence, during which the exponents λi in the Type-3 matrices may change accordingly.
By carefully selecting suitable Type-2 matrices and inserting them at appropriate positions
in the sequence, the total XOR cost can be further reduced.

To achieve it further, we adopt a greedy strategy. In total, there are n·(2n−1) candidate
Type-2 matrices of the form Ek(gr), where 0 ≤ k < n and γ ∈

[
−(2n−1−1), 2n−1−1

]
, as

well as t possible insertion points in the sequence of Type-3 matrices. In order to find the
optimal Type-2 matrix and insertion position, we perform the following steps:

Step 1: Propagate each candidate Type-2 matrix to all t insertion points from the
right to the left of the sequence, and compute the updated XOR cost after insertion. This
results in evaluating m(2n−1)t configurations in total, and their costs are recorded.

Step 2: Select the Type-2 matrix and insertion position that minimized total updated
XOR cost.
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Step 3: If the updated minimum cost is not lower than the current cost, we terminate
the process. Otherwise, we update the matrix sequence by inserting the selected Type-2
matrix at the chosen position, then go back to Step 1.

To describe the above procedure more clearly and highlight the greedy strategy, we
summarize it in Algorithm 3.

Algorithm 3: Greedy strategy to reduce the implementation area via Type-2
matrices

Input: Type-3 matrix sequence O = [Ei1,j1(gλ1), . . . , Eit,jt
(gλt)]

Output: Optimized sequence O′

1 Initialize loop← true;
2 Initialize OldCost←

∑t
j=1 |λj |;

3 while loop do
4 Set loop← false;
5 Let best_gain← 0, best_insertion← None;

// Try all possible Type-2 insertions
6 foreach row index k = 0 to m− 1 do
7 foreach exponent γ ∈

[
−(2n−1−1), 2n−1−1

]
do

8 Insert Ek(gγ) at the right of O;
// Propagate Ek(gγ) from right to left

9 for s = t to 1 do
10 Swap Eis,js(gλs) with Ek(gγ);
11 Compute new cost NewCost←

∑t
j=1 |λj |+

∑
Type-2 |γ|;

12 Let ∆← OldCost− NewCost;
13 if ∆ > best_gain then
14 Update best_gain← ∆;
15 Update best_insertion← Ek(gγ);

16 if best_gain > 0 then
17 Append best_insertion to sequence O;
18 Update OldCost← NewCost;
19 Set loop← true;

20 return Optimized operation sequence O′

Discussion. Usually, we construct MDS matrices by using Type-2 and Type-3 elementary
matrices over finite fields F24 and F28 . These matrices are efficiently used for designing
traditional block ciphers. However, post-quantum secure cryptographic primitives require
linear layers over larger word sizes, such as 16, 32 and 64 bits. Fortunately, our method
can also construct MDS matrices over such large word sizes by replacing the generator
g ∈ F2n used in the matrix decomposition with a binary matrix L ∈ GL(n,F2). This
generalization is motivated by the fact that every generator g can be represented as an
n× n binary matrix L ∈ GL(n,F2) under a fixed basis of F2n over F2. In order to control
the implementation area, the XOR cost of L is usually limited to several XORs. In this
work, we fix a special structure for the matrix L as

L[i + 1, i] = 1 for 0 ≤ i < n−1, L[0, n−1] = 1.

Another 1 ∼ 3 extra ‘1’s are randomly placed in the remained entries of the matrix. The
construction results are shown in the next section.
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4 Applications
4.1 Construction of 4 × 4 MDS Matrices
Firstly, according to Algorithm 1, we can construct potential 4× 4 MDS matrix patterns
using 8 Type-3 elementary matrices. For example, consider an MDS matrix pattern of the
form:

M = E3,0(Lλ8)·E1,2(Lλ7)·E2,3(Lλ6)·E0,1(Lλ5)·E3,0(Lλ4)·E1,2(Lλ3)·E2,3(Lλ2)·E0,1(Lλ1),

where L and exponents λi (i = 1, 2, . . . , 8) are symbolic variables yet to be determined.
The cost of this pattern is given by 8n +

∑8
i=1 #XOR(Lλi).

Next, we minimize the sum
∑8

i=1 |λi| by automatically searching for suitable values
of λi based on SAT/SMT, as described in Algorithm 2, over a fixed finite field such as
F24/0x13 or F28/0x1c3.

As a result, we find that one of the best exponent instantiations over F24/0x13 is λ1 = λ2 = λ3 = λ8 = 0
λ4 = λ5 = λ6 = −1
λ7 = 1

,

and the resulting matrix M is

M = E3,0(1) · E1,2(L) · E2,3(L−1) · E0,1(L−1) · E3,0(L−1) · E1,2(1) · E2,3(1) · E0,1(1).

The cost to implement this matrix is 8n + #XOR(L) + 3#XOR(L−1).
Furthermore, we apply Type-2 elementary matrices to optimize M again, according to

Algorithm 3. The resulting matrix is:

M = E3,0(1)·E1,2(1)·E2,3(L−1)·E0,1(1)·E1(L−1)·E3,0(L−1)·E1,2(1)·E2,3(1)·E0,1(1). (5)

The cost to implement M is now approximately 8n + 3#XOR(L−1), which is equivalent to
the best previous result.

Lastly, we choose an n × n binary matrix L and verify whether the corresponding
matrix M is MDS matrix by computing all its minors and checking that they are non-zero
according to Lemma 1. Finally, we successfully obtain 4× 4 MDS matrices with word sizes
n = 4, 8, 16, 32 and 64 bits, as summarized in Table 5.

Table 5: Construction of 4× 4 MDS matrices with word sizes n = 4, 8, 16, 32 and 64 bits

n Field/Ring Pattern L #XOR

4 F24/0x13 Exp. (5) [[4], [1, 4], [2], [3]]∗ 35
8 GL(8,F2) Exp. (5) [[2, 8], [1], [2], . . . , [7]] 67
16 GL(16,F2) Exp. (5) [[1, 16], [1], [2], . . . , [15]] 131
32 GL(32,F2) Exp. (5) [[2, 32], [1], [2], . . . , [31]] 259
64 GL(64,F2) Exp. (5) [[1, 64], [1], [2], . . . , [63]] 515
∗ L is the companion matrix of x4 + x + 1 ∈ F2[x].

4.2 Construction of 5 × 5 MDS Matrices
Firstly, according to Algorithm 1, we can construct potential 5×5 MDS matrix patterns by
13 Type-3 elementary matrices. For example, consider an MDS matrix pattern as follows:

M = E4,3(Lλ13) · E1,0(Lλ12) · E2,4(Lλ11) · E3,1(Lλ10) · E0,2(Lλ9)
· E2,3(Lλ8) · E1,0(Lλ7) · E4,1(Lλ6) · E0,4(Lλ5) · E3,0(Lλ4)
· E1,2(Lλ3) · E2,3(Lλ2) · E0,1(Lλ1),
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where L and the exponents λi (i = 1, 2, . . . , 13) are symbolic variables and they are
unknown. Now the cost of this pattern is 13n +

∑13
i=1 #XOR(Lλi).

Next, we minimize the sum of the exponents
∑13

i=1 λi by automatically searching
suitable values for λi, i = 1, 2, . . . , 13 based on SAT/SMT according to the Algorithm
2 over a fixed finite field, such as F24/0x13. As a result, we find that one of the best
exponent instantiations over F24/0x13 is λ1 = λ5 = λ7 = λ8 = λ9 = λ11 = λ13 = 0

λ3 = −6 λ6 = −3 λ12 = −1
λ10 = 1 λ4 = 2 λ2 = 3

.

Applying further optimization via Type-2 elementary matrices by Algorithm 3, we obtain
the following matrix pattern:

M = E4,3(1) · E1,0(1) · E2,4(1) · E3,1(1) · E1(L)
· E0,2(1) · E2,3(1) · E1,0(1) · E4,1(L−3) · E0,4(1)
· E3,0(L2) · E1,2(L−6) · E2,3(L3) · E0,1(1).

(6)

Now the cost of this matrix is 13n+#XOR(L)+#XOR(L2)+#XOR(L3)+#XOR(L−3)+#XOR(L−6).
In order to construct the MDS matrix with 8-bit word size, we fix the finite field as

F28/0x187 and apply Algorithm 2 again to find a satisfying assignment for the symbolic
exponents:  λ1 = λ2 = λ3 = λ4 = λ5 = λ7 = λ11 = λ13 = 0

λ8 = λ9 = λ10 = λ12 = −1
λ6 = −3

.

Now the matrix M is

M =E4,3(1) · E1,0(L−1) · E2,4(1) · E3,1(L−1)
· E0,2(L−1) · E2,3(L−1) · E1,0(1) · E4,1(L−3) · E0,4(1)
· E3,0(1) · E1,2(1) · E2,3(1) · E0,1(1).

(7)

The cost of this matrix is 13n + 4#XOR(L−1) + #XOR(L−3).
Based on Expression (6) and (7), we choose an n× n binary matrix L to check if its

corresponding matrix M is MDS matrix by computing the minors of M and checking if
they are non-zero according to Lemma 1. Finally, we find 5× 5 MDS matrices with word
sizes n = 4, 8, 16, 32 and 64 bits, which are summarized in Table 6.

Table 6: Construction of 5× 5 MDS matrices with word sizes n = 4, 8, 16, 32 and 64 bits

n Field/Ring Pattern L #XOR

4 F24/0x13 Exp. (6) [[4], [1, 4], [2], [3]]∗ 65
8 F28/0x187 Exp. (7) [[8], [1, 2], [2, 8], . . . , [7]]⋆ 117
16 GL(16,F2) Exp. (7) [[1, 16], [1], [2], . . . , [15]] 215
32 GL(32,F2) Exp. (7) [[2, 32], [1], [2], . . . , [31]] 423
64 GL(64,F2) Exp. (7) [[1, 64], [1], [2], . . . , [63]] 839
∗ L is the companion matrix of x4 + x + 1 ∈ F2[x].
⋆ L is the companion matrix of x8 + x7 + x2 + x + 1 ∈ F2[x].
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4.3 Construction of 6 × 6 MDS Matrices

Firstly, according to Algorithm 1, we can construct potential 6×6 MDS matrix patterns by
17 Type-3 elementary matrices. For example, consider an MDS matrix pattern as follows:

M = E3,0(Lλ17) · E1,4(Lλ16) · E4,3(Lλ15) · E2,1(Lλ14) · E0,5(Lλ13)
· E5,4(Lλ12) · E3,2(Lλ11) · E1,0(Lλ10) · E4,1(Lλ9) · E2,5(Lλ8)
· E0,3(Lλ7) · E5,0(Lλ6) · E3,4(Lλ5) · E1,2(Lλ4) · E4,5(Lλ3)
· E2,3(Lλ2) · E0,1(Lλ1),

where L and exponents λi (i = 1, 2, . . . , 17) are symbolic variables and they are unknown.
Now the cost of this pattern is 13n +

∑17
i=1 #XOR(Lλi).

Next, we minimize the sum of the exponents
∑17

i=1 |λi| by automatically searching
suitable values for λi, i = 1, 2, . . . , 17 based on SAT/SMT according to Algorithm 2 over
a fixed finite field. However, we cannot find a satisfying assignment for the symbolic
exponents over F24 . Therefore, we try to find a satisfying assignment over F28 . As a result,
we find that one of the best exponent instantiations over F28/0x187 is

 λ1 = λ2 = λ3 = λ8 = λ10 = λ13 = λ14 = λ15 = λ16 = λ17 = 0
λ7 = λ11 = −2 λ4 = λ5 = λ9 = λ12 = 1
λ6 = −1

.

Now the matrix M is

M = E3,0(1) · E1,4(1) · E4,3(1) · E2,1(1) · E0,5(1)
· E5,4(L) · E3,2(L−2) · E1,0(1) · E4,1(L) · E2,5(1)
· E0,3(L−2) · E5,0(L−1) · E3,4(L) · E1,2(L) · E4,5(1)
· E2,3(1) · E0,1(1),

(8)

and the cost of this matrix is 17n + 4#XOR(L) + #XOR(L−1) + 2#XOR(L−2).
Based on Expression (8), we choose an n×n binary matrix L to check if its corresponding

matrix M is MDS by computing the minors of M and checking if they are non-zero according
to Lemma 1. Finally, we obtain 6× 6 MDS matrices with word sizes n = 8, 16, 32 and 64
bits, which are summarized in Table 7.

Table 7: Construction of 6× 6 MDS matrices with word sizes n = 8, 16, 32 and 64 bits

n Field/Ring Pattern L #XOR

8 F28/0x187 Exp. (8) [[8], [1, 2], [2, 8], . . . , [7]]∗ 154
16 GL(16,F2) Exp. (8) [[2, 16], [1], [2, 5], [3], . . . , [15]] 290
32 GL(32,F2) Exp. (8) [[11, 32], [1], [2], . . . , [31]] 553
64 GL(64,F2) Exp. (8) [[13, 64], [1], [2], . . . , [63]] 1097
∗ L is the companion matrix of x8 + x7 + x2 + x + 1 ∈ F2[x].
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4.4 Construction of 7 × 7 MDS Matrices
Firstly, according to Algorithm 1, we can construct potential 7×7 MDS matrix patterns by
23 Type-3 elementary matrices. For example, consider an MDS matrix pattern as follows:

M = E0,2(Lλ23) · E5,1(Lλ22) · E1,0(Lλ21) · E0,6(Lλ20) · E4,1(Lλ19)
· E6,4(Lλ18) · E2,6(Lλ17) · E4,5(Lλ16) · E3,0(Lλ15) · E5,2(Lλ14)
· E1,3(Lλ13) · E0,4(Lλ12) · E3,5(Lλ11) · E4,1(Lλ10) · E2,0(Lλ9)
· E6,3(Lλ8) · E0,6(Lλ7) · E5,0(Lλ6) · E3,4(Lλ5) · E1,2(Lλ4)
· E4,5(Lλ3) · E2,3(Lλ2) · E0,1(Lλ1),

where L and exponents λi (i = 1, 2, . . . , 23) are symbolic variables and they are unknown.
Now the cost of this pattern is 21n +

∑23
i=1 #XOR(Lλi).

Next, we minimize the sum of the exponents
∑23

i=1 |λi| by automatically searching
suitable values for λi, i = 1, 2, . . . , 23 based on SAT/SMT according to Algorithm 2 over
a fixed finite field. However, we cannot find a satisfying assignment for the symbolic
exponents over F24 . Therefore, we try to find a satisfying assignment over F28 . As a result,
we find that one of the best exponent instantiations over F28/0x187 is

λ1 = λ2 = λ3 = λ21 = λ23 = 0
λ4 = λ10 = λ11 = −3 λ16 = λ22 = 1
λ5 = λ18 = λ20 = −2 λ9 = λ15 = λ19 = 2
λ6 = λ7 = λ8 = λ12 = λ13 = λ14 = λ17 = −1

.

Now the matrix M is

M = E0,2(1) · E5,1(L) · E1,0(1) · E0,6(L−2) · E4,1(L2)
· E6,4(L−2) · E2,6(L−1) · E4,5(L) · E3,0(L2) · E5,2(L−1)
· E1,3(L−1) · E0,4(L−1) · E3,5(L−3) · E4,1(L−3) · E2,0(L2)
· E6,3(L−1) · E0,6(L−1) · E5,0(L−1) · E3,4(L−2) · E1,2(L−3)
· E4,5(1) · E2,3(1) · E0,1(1),

and the cost of this matrix is 23n + 2#XOR(L) + 7#XOR(L−1) + 3#XOR(L2) + 3#XOR(L−2) +
3#XOR(L−3).

Applying further optimization via Type-2 elementary matrices by Algorithm 3, we
obtain the following matrix pattern:

M = E0,2(1) · E5,1(1) · E1,0(1) · E0,6(L−1) · E4,1(1) · E6,4(L−1)
· E2,6(1) · E2(L) · E4,5(1) · E3,0(L) · E5,2(L−1) · E1,3(1)
· E1(L) · E0,4(L) · E4(L−1) · E3,5(L−3) · E4,1(L−3) · E2,0(L)
· E6,3(L−1) · E0,6(1) · E0(L) · E5,0(L−1) · E3,4(L−2) · E1,2(L−3)
· E4,5(1) · E2,3(1) · E0,1(1).

(9)

Now the cost to implement M is about 23n + 6#XOR(L) + 6#XOR(L−1) + #XOR(L−2) +
3#XOR(L−3).

Lastly, we choose an n× n binary matrix L to check if its corresponding matrix M is
MDS by computing the minors of M and checking if they are non-zero according to Theorem
Lemma 1. Finally, we obtain 7 × 7 MDS matrices with word sizes n = 8, 16, 32 and 64
bits, which are summarized in Table 8.
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Table 8: Construction of 7× 7 MDS matrices with word sizes n = 8, 16, 32 and 64 bits

n Field/Ring Pattern L #XOR

8 F28/0x187 Exp. (9) [[8], [1, 2], [2, 8], . . . , [7]]∗ 227
16 GL(16,F2) Exp. (9) [[2, 16], [1], [2, 5], [3], . . . , [15]] 414
32 GL(32,F2) Exp. (9) [[11, 32], [1], [2], . . . , [31]] 759
64 GL(64,F2) Exp. (9) [[15, 64], [1], [2], . . . , [63]] 1495
∗ L is the companion matrix of x8 + x7 + x2 + x + 1 ∈ F2[x].

4.5 Construction of 8 × 8 MDS Matrices
Firstly, according to Algorithm 1, we can construct potential 8×8 MDS matrix patterns by
26 Type-3 elementary matrices. For example, consider an MDS matrix pattern as follows:

M = E5,6(Lλ26) · E1,2(Lλ25) · E4,5(Lλ24) · E2,3(Lλ23) · E0,1(Lλ22)
· E6,7(Lλ21) · E7,4(Lλ20) · E5,2(Lλ19) · E3,0(Lλ18) · E1,6(Lλ17)
· E2,7(Lλ16) · E0,5(Lλ15) · E6,3(Lλ14) · E4,1(Lλ13) · E1,2(Lλ12)
· E7,0(Lλ11) · E5,6(Lλ10) · E3,4(Lλ9) · E6,1(Lλ8) · E4,7(Lλ7)
· E2,5(Lλ6) · E0,3(Lλ5) · E7,6(Lλ4) · E5,4(Lλ3) · E3,2(Lλ2) · E1,0(Lλ1),

where L and exponents λi (i = 1, 2, . . . , 26) are symbolic variables and they are unknown.
Now the cost of this pattern is 26n +

∑26
i=1 #XOR(Lλi).

Next, we minimize the sum of the exponents
∑26

i=1 |λi| by automatically searching
suitable values for λi, i = 1, 2, . . . , 26 based on SAT/SMT according to Algorithm 2 over
a fixed finite field. However, we cannot find a satisfying assignment for the symbolic
exponents over F24 . Therefore, we try to find a satisfying assignment over F28 . As a result,
we find that one of the best exponent instantiations over F28/0x1c3 is

λ1 = λ2 = λ3 = λ4 = 0 λ5 = λ6 = λ7 = λ8 = 3
λ13 = λ14 = λ15 = λ16 = λ21 = λ22 = λ23 = λ24 = −1
λ9 = λ10 = λ11 = λ12 = 1 λ25 = λ26 = −5
λ17 = λ18 = λ19 = λ20 = −2

.

Now the matrix M is
M = E5,6(L−5) · E1,2(L−5) · E4,5(L−1) · E2,3(L−1) · E0,1(L−1)

· E6,7(L−1) · E7,4(L−2) · E5,2(L−2) · E3,0(L−2) · E1,6(L−2)
· E2,7(L−1) · E0,5(L−1) · E6,3(L−1) · E4,1(L−1) · E1,2(L)
· E7,0(L) · E5,6(L) · E3,4(L) · E6,1(L3) · E4,7(L3)
· E2,5(L3) · E0,3(L3) · E7,6(1) · E5,4(1) · E3,2(1) · E1,0(1),

and the cost of this matrix is 26n + 4#XOR(L) + 8#XOR(L−1) + 4#XOR(L−2) + 4#XOR(L3) +
2#XOR(L−5).

Applying further optimization via Type-2 elementary matrices by Algorithm 3, we
obtain the following matrix pattern:

M = E5,6(L−5) · E1,2(L−5) · E4,5(L−1) · E2,3(1) · E0,1(1)
· E6,7(L−1) · E7,4(L−2) · E5,2(L−2) · E3,0(L−4) · E1,6(L−2)
· E2,7(L−1) · E0,5(1) · E6,3(1) · E4,1(L−1) · E1,2(L)
· E7,0(1) · E0(L) · E5,6(L) · E3,4(1) · E3(L−1) · E6,1(L3) · E4,7(L3)
· E2,5(L3) · E0,3(L3) · E7,6(1) · E5,4(1) · E3,2(1) · E1,0(1).

(10)



Yan He, Tingting Cui, Qing Ling and Xi Han 887

Now the cost to implement M is about 26n + 3#XOR(L) + 5#XOR(L−1) + 3#XOR(L−2) +
#XOR(L−4) + 4#XOR(L3) + 2#XOR(L−5).

In order to construct the MDS matrix with large-scale but lower area, we have the
following exponent instantiation: λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ25 = λ26 = 0

λ9 = λ10 = λ11 = λ12 = λ17 = λ18 = λ19 = λ20 = 1
λ13 = λ14 = λ15 = λ16 = 2 λ21 = λ22 = λ23 = λ24 = −1

,

applying further optimization via Type-2 elementary matrices by Algorithm 3, we obtain
the following matrix pattern:

M = E5,6(1) · E1,2(1) · E4,5(1) · E2,3(L−1) · E0,1(1)
· E6,7(L−1) · E7,4(L) · E4(L) · E5,2(L) · E3,0(1) · E0(L) · E1,6(L)
· E2,7(L2) · E0,5(L2) · E6,3(L2) · E4,1(L2) · E1,2(L)
· E7,0(L) · E5,6(L) · E3,4(L) · E6,1(1) · E4,7(1)
· E2,5(1) · E0,3(1) · E7,6(1) · E5,4(1) · E3,2(1) · E1,0(1).

(11)

Now the cost of this matrix is 26n + 8#XOR(L) + 2#XOR(L−1) + 4#XOR(L2).
Finally, we find 8× 8 MDS matrices with word sizes n = 8, 16, 32 and 64 bits, which

are summarized in Table 9.

Table 9: Construction of 8× 8 MDS matrices with word sizes n = 8, 16, 32 and 64 bits

n Field/Ring Pattern L #XOR

8 F28/0x1c3 Exp. (10) [[8], [1, 3], [1, 2, 3], [3], . . . , [7]]∗ 281
16 GL(16,F2) Exp. (11) [[2, 16], [1], [2, 5], [3], . . . , [15]] 452
32 GL(32,F2) Exp. (11) [[11, 32], [1], [2], . . . , [31]] 850
64 GL(64,F2) Exp. (11) [[15, 64], [1], [2], . . . , [63]] 1682
∗ L is the companion matrix of x8 + x7 + x6 + x + 1 ∈ F2[x] and it can be

implemented by 2 XORs.

Remark. As our method aims to reduce the number of XOR gates so as to minimize the
implementation area, it is important to verify whether these theoretical results consistent
with the practical performance. As an example, consider the the 4 × 4 MDS matrix
with an XOR cost of 35; we synthesized it using the TSMC 65 nm standard cell library.
Theoretically, its area is 35× 2.5 = 87.5 GE, as each XOR gate costs approximately 2.5
GE in this library. In practice, the post-synthesis result is 84 GE, as the circuit is slightly
optimized by the tool itself. This confirms that the theoretical area of matrices is consistent
with the practical area to a certain extent.

5 Conclusion
In this paper, we propose a framework to construct MDS matrices based on matrix
decomposition technique. Our method combines symbolic pattern generation, SMT-based
exponent optimization and greedy strategy to minimize the implementation area cost
while preserving the MDS property. Experimental results show that this method achieves
competitive performance across various dimensions and word sizes. However, there are
still several limitations: firstly, for certain matrix dimensions such as 6 × 6, 7 × 7 and
8× 8, we were unable to find MDS matrices with word size n = 4 with the current search
strategy; secondly, the trade-off between SMT-based exponent optimization and Type-2
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matrix insertion is nontrivial; thirdly, we limited our search to matrix dimensions up
to m = 8 because the search space and required computational resources grow rapidly
with increasing m. In the future, we hope these limitations will be fixed by some new
techniques.
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A Appendix
Three types of elementary matrices are represented as follows:

Ei,j =



1
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

1
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j

i

Ei(α) =
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1
. . .

1
α

1
. . .

1


i

Ei,j(β) =



1
. . .

1 · · · 0
...

. . .
...

β · · · 1
. . .

1


j

i

where i and j are the row indices of the elementary matrix, α and β are non-zero elements
in the finite field.
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